
THE NEW MEROLOGY 
 
 

by Lee Sallows 
 
 
 
Old merology, or “that branch of anatomy that deals with the elementary tissues and 
fluids of the body” (Oxford English Dictionary), we know about. What of the new? 
 
In the November 1989 Word Ways, Dave Morice pointed to the lack of self-descriptive 
English number words whose gematric value (using A = 1, B = 2, etc.) is equal to the 
number indicated by the word. “However,” he went on, “perfect number names can be 
found in neo-alphabets whose letters have been rearranged to accommodate the letter 
values.” 
 
Neo-alphabets? Alphabets using the 26 letters of the alphabet in non-alphabetical order? I 
call this logological heresy. If I may paraphrase Kronecker: God constructed the alphabet, 
everything else is the work of Man. Depart from this principle and logology is lost.  
 
But like Morice and others he mentions, the failure of “perfect” or self-descriptive 
numbers to exist bothered me too. In the search for agreement between numbers and 
letters the best I could manage was the following gematric hat trick: 
 
 

The gematric constant of this sentence is six hundred fifty three. 
 (33+76+106+21+56+85+28+52+74+122 = 653) 

This is a beastly text: numerological constant of six-six-six. 
(56+28+1+84+69+145+106+21+156 = 666) 

Double check: E = 5, O = 15, so the Number of the Boast is six hundred seventy six. 
(59+30+5+15+34+33+73+21+33+57+238+52+74+110+52 = 676) 

 
 
This was challenging to complete, but the result is tedious to verify and thus anything but 
crisp in impact. Furthermore it is simply not the animal sought. However, at length a new 
approach to perfect number names suggested itself. 
 
Observe that in Morice’s rearrangment scheme every letter retains a value in the range 1 
to 26, but differently ordered. However, I suggest now is the time to stop thinking in 
terms of positions and to see this as simply a reallocation of numbers to letters. This view 
not only dispenses with neo-alphabets, it reminds us that we are free to assign values to 
letters at will. Any values. Not merely those between 1 and 26, or indeed whole numbers 
only. The time-honoured practice of linking each letter to its position number is an 
expendable convention. New merology takes this as its starting point. 
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Suppose ONE is a ‘perfect’ number name. Then O+N+E = 1 by definition. Clearly, either 
O, N, and E are not whole numbers or at least one of them must be negative. Leaving 
non-integral numbers for future consideration, we allow negative integers and explore 
further. Now N and E also occur in both NINE and TEN, and perhaps these are perfect 
numbers too. Let us assume so, and suppose further that the values of E and N are already 
fixed. Then by elementary algebra, O = 1 – N – E,  I = 9 – 2N – E, and T = 10 – N – E. 
Three new letter values have now been established, but we can do more. Perhaps TWO is 
a perfect number name as well. If so, W = 2 – T – O, and T and O are already identified. 
 
At this stage a question arises. Suppose E = 4 and N = 2. Then T, which is 10 – N – E, 
equals 4, the same value as E. Are different letters to share identical values? The notion 
offends a basic principle of gematria. Accordingly, we make it an axiom that the identity 
of each letter must be reflected in a unique numerical value. For the sake of discussion let 
E = 1 and N = 2. This entails I = 4, T = 7, O = –2, and W = –3. All distinct. ONE, TWO, 
NINE and TEN are now perfect. Can we go further? 
 
Suppose THREE is perfect. Then H = 3 – T – R – 2E, but R is unknown. Trial and error 
must suffice.Choosing the first positive integer not yet used, let H = 3. This makes R = 3 
– T – H – 2E  =  –9, a new integer. Then FOUR may be perfect as well. This would mean 
F = 4 – O – U – R , with U still unknown. As before, 1, 2, 3, and 4 having been allocated, 
we set F = 5 and see what happens. It works: U = 4 – F – O – R  =  10, another new 
addition. This brings us to FIVE, which implies V = 5 – I – F – E  =  –5. Different again. 
The numbers employed so far are: –9, –5, –3, –2, 1, 2, 3, 4, 5, 7, 10. ONE, TWO, 
THREE, FOUR, FIVE, NINE and TEN are now perfect. 
 
SIX is our next candidate, but it contains two unknowns: S and X. Better to try SEVEN 
first, whence S = 7 – V – 2E – N  =  8. Another fresh face. And now that we know S, X = 
6 – S – I  =  –6. Yet a new number. We arrive thus at EIGHT, from which G = 8 – E – I – 
H – T  = –7. Again original. NINE and TEN have already been dealt with. Dare we try 
further? Fifteen letters appear in the English number names from ONE through 
NINETEEN: E, F, G, H, I, L, N, O, R, S, T, U, V, W, X. Fourteen have been accounted 
for. The only remaining one, L, appears in both ELEVEN and TWELVE, from which L = 
11 – 3E – V – N  =  12 – T – W – V – 2E. Is it possible that both expressions evaluate to 
the same number, and that this is one hitherto unused? It is. The number is 11. 
 
We pause for assessment. Combining algebra with serendipity, the values of 15 letters 
have been established:   
 

E  F  G  H  I  L  N  O  R  S  T  U  V  W  X 
1  5 –7  3  4 11  2 –2 –9  8  7 10 –5 –3 –6 

 
Ignoring sign (and the few consequent repetitions), these numbers make up the 
consecutive set 1,2,3,4,5,6,7,8,9,10,11. Under these assignments the gematric values of 
ONE through TWELVE equal 1 through 12. The next question is obvious. Will 
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THIRTEEN turn out to be unlucky, as numerologists have ever insisted? Neomerology 
now supplants superstition with rigorous proof. 
 
From arithmetic we know that 13 = 3 + 10. Hence, assuming that THREE, TEN and 
THIRTEEN are all perfect, we have T+H+I+R+T+E+E+N = T+H+R+E+E  +  T+E+N. 
But cancelling common letters on both sides yields I = E, which is to say I and E must 
share the same value, contrary to axiom. Thus, irrespective of letter values selected, if it 
includes THREE and TEN, no unbroken run of perfect numbers can exceed TWELVE. 
Which is to say, for perfectionists THIRTEEN is unlucky. 
 
Having failed at the higher end, can we extend to ZERO at the lower? But in that case Z 
= 0 – E – R – O  =  10, the same value as U. As yet though we have considered only one 
set of assignments. Using different numbers the goal is achievable. Consider the 
following allocations: 
 

E  F  G  H  I  L  N  O  R  S  T  U  V  W  X  Z   
3  9  6  1 –4  0  5 –7 –6 –1  2  8 –3  7 11 10 

 
Not only is Z now included but the 16 unsigned integers again comprise a consecutive 
set, 0,1,2,3,4,5,6,7,8,9,10,11, to yield: 
 

Z+E+R+O       =   10 + 3 – 6 – 7          =    0 
O+N+E         =   –7 + 5 + 3              =    1 
T+W+O         =    2 + 7 – 7              =    2 
T+H+R+E+E     =    2 + 1 – 6 + 3 + 3      =    3 
F+O+U+R       =    9 – 7 + 8 – 6          =    4 
F+I+V+E       =    9 – 4 – 3 + 3          =    5 
S+I+X         =   –1 – 4 + 11             =    6 
S+E+V+E+N     =   –1 + 3 – 3 + 3 + 5      =    7 
E+I+G+H+T     =    3 – 4 + 6 + 1 + 2      =    8 
N+I+N+E       =    5 – 4 + 5 + 3          =    9 
T+E+N         =    2 + 3 + 5              =   10 
E+L+E+V+E+N   =    3 + 0 + 3 – 3 + 3 + 5  =   11 
T+W+E+L+V+E   =    2 + 7 + 3 + 0 – 3 + 3  =   12 

 
 
The letter values selected here are far from forming a unique solution. So weak are the 
interdependencies imposed by English orthography that the number of different solution 
sets using integers below a given ceiling is surprisingly large. No fewer than 153 exist 
using integers between –15 and 15, for instance. Moreover, since there is no upper limit 
on allowable integers new solutions can be found without bound. 
 
But is the above a minimal solution in the sense of using the lowest possible values (when 
ZERO is included)? The answer to this and related questions has been given by a simple 
computer program. The algorithm works similarly to the approach explained, with nested 
DO-loops trying out all possible values in systematically incremented steps (details 
available from lee.sal@inter.nl.net ).In fact the above solution is one of two sets coming in 
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second place to the minimal solution. Alas, the latter lacks an 8 or –8 needed to form a 
complete consecutive set: 
 

 E  F  G  H  I  L  N  O  R  S  T  U  V  W  X  Z 
–2 –6  0 –7  7  9  2  1  4  3 10  5  6 –9 –4 –3 

 
 
 
Ideal Maps 
 
So far we have looked at three solution sets, each of them using integers less than 12. As 
a result, they share an interesting reflexive property: the values assigned to the letters are 
themselves numbers occurring within the range of perfect number names they produce. (I 
refer here to the absolute or unsigned letter values used; henceforth unsigned values can 
be assumed whenever numbers, integers or values are mentioned). Now, since there are 
16 different letters and only 13 possible number names (ZERO through TWELVE), some 
of those values must occur twice. The minimal set shows six such repeats: E,N (both 2), 
S,Z (both 3), R,X (both 4), F,V (both 6), H,I (both 7), and L,W (both 9). But suppose we 
relax the demand for a serial sequence of perfect numbers and take in all possibilities. 
Could there exist a set of entirely distinct letter values giving rise to an identical set of 
perfect number names? Or, more realistically, giving rise to a set that includes all of its 
letter values? Call such a set of assignments an ideal map. A near miss discovered is one 
containing 15 rather than 16 different integers: 
 

E  F  G  H  I  L  N  O  R  S  T  U  V  W  X  Z 
0  –10     9   –8     1   –7     4    –3     5  –11    6    12   14   –1   16    –2 

 
The numbers employed here are 0 through 12, plus 14 and 16, almost the lowest sixteen 
integers. As previously, we find ZERO through TWELVE are perfect, but now E = 0, so 
that T+E+E+N is equal to T+E+N, whereby FOURTEEN and SIXTEEN (as well as 
SEVENTEEN and NINETEEN) are also self-descriptive. It is a pity that this almost 
flawless gem is spoiled by the 1 and –1. 
 
Even so, it creates a basis for an impressive display of number magic. To perform this, 
make up a set of cards, each showing one of the above letters together with its associated 
number on the same side of the card. You will need three cards bearing E/0 and two with 
N/4, for a total of 19 cards. Lay them out from left to right with the numbers in serial 
order. Point out to your audience that every letter has its own number and that, ignoring 
sign, these run from 0 through 16, excluding 13 and 15. Get someone to choose one of 
the numbers. The (unsigned) integer named is now spelled out by assembling the 
appropriate letters in order, whereupon their associated numbers are added up aloud by 
the demonstrator to reveal the magical identity. The surprise this produces is gratifying. 
Aside from the small integers it uses, another nice feature is that naughty attempts to spell 
out THIRTEEN and FIFTEEN are nicely foiled through lack of a second T or F. 
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At the price of larger integers, however, unblemished specimens can yet be found. We 
note that extension beyond NINETEEN will bring in Y, while if ZERO drops out, Z may 
disappear. Here follow two examples: 
 

 E  F  G  H  I  L  N  O  R  S  T  U  V  W  X  Y 
   8 –24  –11  –20  25     3  –12     5     1     7     6    22   –4   –9  –26   21 
   7   20    –6    24  –8   –1      5 –11 –26     2   –9    21 –14   22    12     4 

 
Observe in each case that besides the 16 numbers appearing, TWENTY through 
TWENTY-NINE are all perfect, as are ONE through NINE, ELEVEN, TWELVE, 
FOURTEEN, SIXTEEN, SEVENTEEN and NINETEEN. In the first, setting Z = –14 
will make ZERO perfect, resulting in an ideal map of 17 letters. These examples 
represent the lowest integer solutions so far unearthed. Probably they can be improved 
upon. However, the task of generating ideal maps should not be underestimated. 
 
One further example is worth presenting. Sixteen distinct numbers occur in the following, 
eight positive, eight negative. This lends itself to display on a checkerboard: 
 

 
 

Choose any number on the board. Call out the letters that spell its name, adding up their 
associated numbers when on white squares, subtracting when on black. Their sum is the 
number you selected. 
 
Related to the above is the question of seeking letter values that maximize the perfect 
number names produced. Again, this is trickier than first sight suggests. In my best 
solution to date, as before ZERO through NINE, ELEVEN, TWELVE, FOURTEEN, 
SIXTEEN, SEVENTEEN,  and NINETEEN are perfect. But now, so also are TWENTY 
through FORTY-NINE, making a total of 46 self-descriptive number words under ONE 
HUNDRED: 
 

  E  F  G  H  I  L  N  O  R  S  T  U  V  W  X  Y  Z 
 –11   21    10   –1   –8   27    14   –2     8    12   18  –23    3  –14    2    –5     5 

 
Staying under ONE HUNDRED, can anyone improve on this? 
 

 5



Ross Eckler has pointed out that the list of 46 can be doubled to 92 by proper choice of 
the D's in (ONE) HUNDRED, 92 doubled again through proper choice of the A in 
THOUSAND, and so on with M in MILLION, B in BILLION, Q in QUADRILLION, P 
in SEPTILLION, and C in OCTILLION. This leads to a grand total of 128 × 46  =  5888 
perfect number names.  
 
 
Perfect Number Names in French 
 
The behaviour of the French perfect number names is so different from English that they 
merit a glance. Seventeen letters are employed: A,C,D,E,F,H,I,N,O,P,Q,R,S,T,U,X,Z. 
Working out correlations among the admissible values as dictated by UN, DEUX, 
TROIS, etc., holds such a surprise that I urge readers who enjoy (logo)logical deduction 
to stop reading now and try it for themselves. The following paragraph gives a good idea 
of the reasoning involved. 
 
In the first place, in French it is not TREIZE (13) but QUATORZE (14) that is unlucky. 
The proof is neat. Subtracting QUATRE (4) from QUATORZE shows that O + Z = 14 – 
4  = 10. Now O and Z occur in ONZE (11). Hence ONZE  –  (O + Z)  =  N + E  =  11  – 
10  =  1. But 1 is UN. Thus U + N  =  N + E, from which U = E. A perfect number run 
including QUATRE and ONZE therefore cannot exceed TREIZE. C’est tout. 
 
In a similar series of deductions the relations among ZERO, UN, DEUX, TROIS, 
QUATRE, CINQ, SIX, SEPT, HUIT, NEUF, DIX, ONZE, DOUZE, and TREIZE can 
also be uncovered. What fascinates me is the rigidity of the interlocking pattern thus 
disclosed. Amazingly, of the 17 letters involved, nearly three quarters are expressible as 
simple arithmetic functions of just one letter, N. That is to say, in assigning a value to N, 
the values of eleven other letters are simultaneously decided! The completed analysis 
looks like this: 
 
A = *       F = 13–3N   O = 0       S = 2N–4    Z = 16–4N 
C = A–5N–4  H = 4N–11   P = 2       T = 14–5N 
D = 2N      I = 2N+4    Q = 2N+5–A  U = 1–N 
E = 3N–5    N = *       R = N–11    X = 6–4N 
 
 
Notice that besides the 11 values determined with N, although A can be assigned any 
number (provided it is different from the others), C and Q are then defined, while O and 
P are the fixed constants 0 and 2. Such a tight pattern of correlations means the existence 
of a solution set cannot be taken for granted. Nevertheless, trying in turn N = 1, 3, 4, …, 
the first solution occurs when N = 7. It is not difficult to see that this is made minimal by 
setting A = 20: 
 
A   C   D   E   F   H   I   N   O   P   Q   R   S   T   U   X   Z 
20 –19 14  16  –8  17  18   7   0   2  –1  –4  10 –21  –6 –22 –12 
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The perfect French number names are then as follows: 
 
 
 

Z+E+R+O     =  –12+16–4           =   0 
U+N         =  –6+7               =   1 
D+E+U+X     =   14+16–6–22        =   2 
T+R+O+I+S   =  –21–4+0+18+10      =   3 
Q+U+A+T+R+E =  –1–6+20–21–4+16    =   4 
C+I+N+Q     =  –19+18+7–1         =   5 
S+I+X       =   10+18–22          =   6 
S+E+P+T     =   10+16+2–21        =   7 
H+U+I+T     =   17–6+18–21        =   8 
N+E+U+F     =   7+16–6–8          =   9 
D+I+X       =   14+18–22          =  10 
O+N+Z+E     =   0+7–12+16         =  11 
D+O+U+Z+E   =   14+0–6–12+16      =  12 
T+R+E+I+Z+E =  –21–4+16+18–12+16  =  13 

 
 
 
Again, the absence of any upper bound on assignable values means that although more 
thinly spread than their English counterparts, the number of different solutions is 
unlimited. 
 
 
Final Remarks 
 
It ought to be clear by now that the foregoing is merely an initial step in a field that may 
well yield more to the spade. Less clear is whether we are dealing here with recreational 
linguistics or mathematics. Personally I find great attraction in the no-man’s-land 
between the two. What more might computational isopsephy have to offer? 
 
In the first place there are the perfect number names in the remaining alphabetic 
languages, as yet to be examined. Beyond these stranger structures may await. For 
instance, notice that we are not bound to assign numbers so as to produce only perfect 
numbers. Consider the following assignments: 
 
 
        E  F  G  H  I  L  N  O  R  S  T  U  V  W  X  Z 
  (a)   7 –4 –5  2 –2  6 –7 –1 –9 –8–10 10 –6  9  4  3 
  (b)   2 13 12–10 –1  3 11 –11–5  5 16 10 –3 –2  9 14 
  (c)   2 –7 10 –6  6 –5  1 –1  9 –2 –3  4  5  7  3 –9 
 
 
And the gematric sums: 
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                  (a)     (b)     (c) 
Z+E+R+O       =    0       0       1 
O+N+E         =   –1       2       2 
T+W+O         =   –2       3       3 
T+H+R+E+E     =   –3       5       4 
F+O+U+R       =   –4       7       5 
F+I+V+E       =   –5      11       6 
S+I+X         =   –6      13       7 
S+E+V+E+N     =   –7      17       8 
E+I+G+H+T     =   –8      19       9 
N+I+N+E       =   –9      23      10 
T+E+N         =  –10      29       0 

 
 
 
(a) yields the negative integers, (b) the first ten prime numbers, while (c) maps each 
number word onto its successor (modulo 10). That is, starting with any number (say 
EIGHT) and moving in steps as follows: EIGHT to 9, NINE to 10, TEN to 0, ZERO to 1, 
etc., ten steps will always return us to our starting point. Variations on these themes will 
occur to readers. The above are merely curiosities, suggestive of the potential. 
 
A final item of interest in the present context is to see what happens when a reflexicon or 
self-descriptive word list is encoded by replacing its letters with perfect number 
producing integers. Reflexicons occur in different formats. Low totals and absence of 
plural S are convenient in this case: 
 

TWELVE E,    FIVE R, 
SIX F,       FIVE S, 
THREE H,      SIX T, 
SEVEN I,    THREE U, 
TWO L,        SIX V, 
TWO N,       FOUR W, 
FIVE O,      FOUR X. 

 
The number of E’s in the list is twelve, the number of F’s is six, etc. Any of our previous 
examples will provide integers to substitute for the letters. In doing so, it is useful to 
reverse items and add brackets so that, for instance, TWELVE E becomes E(TWELVE). 
The result of this is a single mathematical expression consisting of a sum of products: 
 

 1(7-3+1+11-5+1) + -9(5+4-5+1)   + 
 5(8+4-6)        +  8(5+4-5+1)   +  
 3(7+3-9+1+1)    +  7(8+4-6)     +  
 4(8+1-5+1+2)    + 10(7+3-9+1+1) + 
11(7-3-2)        + -5(8+4-6)     +  
 2(7-3-2)        + -3(5-2+10-9)  +  
-2(5+4-5+1)      + -6(5-2+10-9)  . 
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Predictably, this is no longer an ordinary sum such as might be set in a test on Erasmus. 
Thanks to perfect numbers, the self-descriptive property is retained. Here the sums of the 
terms in parentheses tell how many times the associated multiplier occurs in the entire 
expression. Integer 1 occurs (7–3+1+11–5+1) = 12 times, –2 occurs (5+4–5+1) = 5 times, 
for instance. But curiously, since the above set of numbers is just one among many that 
might be used, the reflexicon is revealed as a template defining an infinite family of self-
descriptive sums. A strange fusion of algebra, cryptanalysis and logology! 
 
The above article first appeared in Word Ways, February 1990, Vol 23, No. 1, pp 12-19. 
 
 

Einschwein’s Magic Numbers 
 
 
Paying a recent call on my old friend Professor Einschwein, the world famous 
Transylvanian logologist, I was priviledged to learn about his latest numerological 
invention. Drawing forth a curious pack of cards, he showed me that each card bore a 
single letter of the alphabet on one side and a single integer, sometimes positive, 
sometimes negative, on the other. 
 
“You see that every distinct letter is paired with its own distinct number on the reverse 
side, and that some cards are duplicated.” I  verified this, noting a total of 20 cards 
showing the 16 letters E,F,G,H,I,L,N,O,R,S,T,U,V,W,X,Y,Z but with three cards for E, 
two for N and two for T. 
 
“Now observe carefully,” he said. Spreading out the cards on the table, the Professor 
carefully selected four, sliding them with his index finger into a single line so as to spell 
the word ZERO. Next, turning the cards over one by one, he invited me to add up the 
numbers so revealed. Their sum was zero. “That’s cute,” I responded, “but don’t I recall 
seeing something along these lines in a recent Word Ways?” “Have patience,” he purred, 
“we are not finished.. Check me at every step.” 
 
Einschwein continued in the same vein, ZERO followed by ONE, TWO, THREE, etc., 
until he had reached TWELVE. I watched him like a hawk throughout. There was no 
question of any new cards being palmed. Each time,  the cards needed were slid into line 
as before and then turned over. The sum of the numbers always tallied with the number 
word spelled. “It’s a nice trick, Professsor,” I said. “But that’s it; you can’t get beyond 
TWELVE. THIRTEEN is unlucky, as proved in that article I saw in the February 1990 
issue, ‘The New Merology’. 
 
Slowly and deliberately he lined up the letters to spell THIRTEEN. With a sinking 
feeling I saw him turn the cards over one by one. Incredibly, their sum was indeed 13. 
 
“But this is against logic!” I cried. “Not only do I recall the earlier imposssibility proof 
that cancelling common letters in the equation T+H+I+R+T+E+E+N = T+H+R+E+E  +  
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T+E+N shows that I = E, and thus I and E could never have different values. We can go 
even further. From N+I+N+E = 9, we know that I = 9-2N-E. But since I = E, then E = 9-
2N-E, from which 2E = 9-2N. Yet, since 2E is even, while 9-2N must be odd, we have a 
contradiction. Thus, if THREE, NINE and TEN are self-descriptive, no assignment of 
numbers, distinct or otherwise could ever make THIRTEEN perfect as well!” 
 
“For vy you are shouting at me already?” cried Einschwein plaintively, his Transylvanian 
accent momentarily in the ascendent. “You vant ve should repeat ze demonstration for 
you all over again?” 
 
Question: What were the numbers on Einschwein’s magic deck of cards?  
 
[This appeared in Word Ways, August 1991. pp165-6] 
 
 
 
 
 
 
 
 
 
 
 
Answer 
 There are various possibilities for the numbers on Einschwein’s cards. Here is one set 
showing small integers: 

E  F  G  H  I  L  N  O  R  S  T  U  V  W  X  Z 
0 14 -2  9 -3 11  6 -5 -10 7  4  5 -6  3  2 15 

 
Using these numbers, ZERO to TWELVE are perfect, while it seems THIRTEEN = 10. 
However, the Professor is not called Einschwein for nothing; in turning card N he does it 
so that the resulting number is “9” not “6”. Hence THIRTEEN becomes 10+3 = 13. 
 
The same trick can be worked in innumerable different ways. In the following, by 
reversing card R to make “6” from “9”, besides ZERO to TWELVE, both THIRTEEN 
and FOURTEEN become perfect: 
 

E   F  G   H  I  L   N  O   R   S  T  U  V  W  X  Z 
3 -18  11 -19  6 -12  0 -2  9 -13  7 15 14 -3 13 -10 
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SPANAGRAMS 
 

 
In “The New Merology” (Word Ways, February 1990) I discussed how distinct integers 
could be assigned to letters so as to produce “perfect” English number words whose 
gematric value is then equal to the number named. As was shown, THIRTEEN is 
unlucky: starting from ZERO, ONE, TWO, …, a consecutive run of perfect numbers 
cannot exceed TWELVE. The same article also examined French, for which 
QUATORZE turns out to be unlucky. Recently I decided to look at Spanish. 
 
The Spanish cardinals begin as follows: 0 = CERO, 1 = UNO, 2 = DOS, 3 = TRES, 4 = 
CUATRO, 5 = CINCO, 6 = SEIS , 7 = SIETE, 8 = OCHO, 9 = NUEVE, 10 = DIEZ, 11 = 
ONCE, 12 = DOCE, 13 = TRECE, and 14 = CATORCE. Using elementary algebra, from 
UNO we see that U = 1 – N – O; from ONCE that C + E = 11 – O – N; from DOCE that 
D = 12 – O – (C + E)  =  N + 1. Thus, from DOS, S = 2 – D – O = 1 – N – O, which is the 
same value as U. A consecutive perfect number run using distinct values for each letter 
therefore cannot exceed ONCE. In short, DOCE is unlucky. 
 
Using a simple computer program similar to that mentioned in the previous article, the 
smallest set of values for perfecting CERO to ONCE then reveal themselves as: 
 

 A   C   D   E   H   I   N   O   R   S   T   U   V   Z 
-9  20   4   7  10 –19  –5 –11 –16   9   3  17 –17  18 

 
which yields: 
 

C+E+R+O      = 20+7-16-11       =  0 
U+N+O        = 17-5-11          =  1 
D+O+S        =  4-11+9          =  2 
T+R+E+S      =  3-16+7+9        =  3 
C+U+A+T+R+O  = 20+17-9+3–16-11  =  4 
C+I+N+C+O    = 20-19-5+20-11    =  5 
S+E+I+S      =  9+7-19+9        =  6 
S+I+E+T+E    =  9-19+7+3+7      =  7 
O+C+H+O      = -11+20+10-11     =  8 
N+U+E+V+E    = -5+7+17-17+7     =  9 
D+I+E+Z      =  4-19+7+18       = 10 
O+N+C+E      = -11-5+20+7       = 11 

 
 
The focus of this note, however, is less on these perfect numbers than it is on a discovery 
made along the way. In preparing the program to look for integer assignments, first a 
number of simultaneous linear equations must be solved. This is because for a given 
language the value of certain letters will depend on those of others, subject to spelling. 
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The program has to know about these relations. Examining the equations involved for 
Spanish, certain peculiarities in the results emerging under my pencil seemed to imply 
that 
 

U+N+O + C+A+T+O+R+C+E  =  C+U+A+T+R+O + O+N+C+E 
 (1)                        (14)                           (4)                      (11) 

 
irrespective of the values assigned to the letters involved. 
 
It took me a while to digest the import of this. Having done so, and controlling my 
excitement, I continued with the equation solving. Ten minutes later this self-control 
seem justified. The truth is that nobody is more error prone than I am when it comes to 
doing sums. It seemed I had fouled things up yet again since the results now coming out 
could only imply that: 
 

D+O+S + T+R+E+C+E  =  T+R+E+S + D+O+C+E 
(2)               (13)                     (3)              (12)                    

 
again, irrespective of the values assigned to the letters involved. 
 
The patent absurdity of these conclusions so irritated me with my own inability to 
calculate that I decided to drop the whole thing until the fog had cleared from my brain. 
Returning to it later however, it took three separate re-checks to convince myself of what 
seemed (and still seems) incredible and wonderful: in the above equations the sum of the 
numbers named on the left-hand side is of course the same as the sum of the numbers 
named on the right-hand side. But in addition, the left-hand side is a perfect anagram of 
the right-hand side! They are in fact Spanish counterparts to the well known single 
English example ONE + TWELVE  =  TWO + ELEVEN. That both Spanish examples 
sum to 15 is a further bonus thown in by the gods. (They remain anagrams when 
expressed in digits or Roman numerals, also). The same cardinals can therefore be 
regrouped to form more extraordinary anagrammatic equations, such as: 
 
30 = UNO + DOS + TRECE + CATORCE = CUATRO + TRES + ONCE + DOCE = 30 
30 = UNO + TRES + DOCE + CATORCE = DOS + CUATRO + ONCE + TRECE = 30 
 
I should be interested if any reader can supply a reference to any previous discovery of 
these anagrams. 
 
 
[The above article first appeared in Word Ways, February 1992, Vol 25, No.1] 
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Rare Maps For Collectors 
 
 
 
Three previous articles in Word Ways [1,2,3] have discussed ways of mapping distinct 
integers onto letters so as to produce “perfect” or self-descriptive number-names. So far 
English, French, and Spanish have been examined. Glancing next at German, the same 
pencil and paper plus computer program approach already outlined in [1] can be used to 
find mappings such as : 
 
 

  A  B  C  D  E  F  G  H  I  L  N  O  R  S  T  U  V  W  Z 
 -1 –4 –5 -9 10 –2  22 –7 –3  3–10 16  5  4  21 19 -8–22 17 
 
 
from which: 
 
 
E+I+N+S     =  10-3-10+4      =  1     S+I+E+B+Z+E+H+N = [7]+[10]  = 17 
Z+W+E+I     =  17-22+10-3     =  2    A+C+H+T+Z+E+H+N = [8]+[10]  = 18 
D+R+E+I     = -9+5+10-3       =  3    N+E+U+N+Z+E+H+N = [9]+[10]  = 19 
V+I+E+R     = -8-3+10+5       =  4    Z+W+A+N+Z+I+G               = 20 
F+Ū+N+F     = -2+19-10-2      =  5    E+I+N+U+N+D+Z+W+A+N+Z+I+G   = 21 
S+E+C+H+S   =  4+10-5-7+4     =  6          . 
S+I+E+B+E+N =  4-3+10-4+10-10 =  7          . 
A+C+H+T     = -1-5-7+21       =  8     D+R+E+I+S+S+I+G             = 30 
N+E+U+N     = -10+10+19-10    =  9     E+I+N+U+N+D+D+R+E+I+S+S+I+G = 31 
Z+E+H+N     =  17+10-7-10     = 10           . 
E+L+F       =  10+3-2         = 11           . 
Z+W+Ō+L+F   =  17-22+16+3-2   = 12     V+I+E+R+Z+I+G               = 40 
D+R+E+I+Z+E+H+N   = [3]+[10]  = 13     E+I+N+U+N+D+V+I+E+R+Z+I+G   = 41 
V+I+E+R+Z+E+H+N   = [4]+[10]  = 14           . 
F+Ū+N+F+Z+E+H+N   = [5]+[10]  = 15           . 
S+E+C+H+S+Z+E+H+N = [6]+[10]  = 16     N+E+U+N+U+N+D+V+I+E+R+Z+I+G = 49 
 

 
This unbroken run from 1 up to 49 puts German far in front of the other three languages, 
the best of which, French, reaches only 14. Note that because VIERZIG is 40 and VIER 
is 4, Z+I+G must equal 36. Therefore, FŪNFZIG must always be 5+36, or 41, not 50. 
 
 
Astrologology 
 
Looking beyond cardinals, the same idea can be extended to other groups of words. 
Kickshaws for May 1991 included the following example using consecutive integers 
applied to the names of the months: 
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-10 –9 –8 –7 –6 –5 –4 –3 –2 –1  0  1  2  3  4  5  6  7  8  9  10 
  B  J  F  G  S  D  N  R  M  L  A  T  P  H  O  C  I  Y  V  E  U 
 
 

J+A+N+U+A+R+Y     =  -9+0-4+10+0-3+7     =  1 
F+E+B+R+U+A+R+Y   =  -8+9-10-3+10+0-3+7  =  2 
M+A+R+C+H         =  -2+0-3+5+3          =  3 
A+P+R+I+L         =   0+2-3+6-1          =  4 
M+A+Y             =  -2+0+7              =  5 
J+U+N+E           =  -9+10-4+9           =  6 
J+U+L+Y           =  -9+10-1+7           =  7 
A+U+G+U+S+T       =   0+10-7+10-6+1      =  8 
S+E+P+T+E+M+B+E+R =  -6+9+2+1+9-2-10+9-3 =  9 
O+C+T+O+B+E+R     =   4+5+1+4-10+9-3     = 10 
N+O+V+E+M+B+E+R   =   4+4+8+9-2-10+9-3   = 11 
D+E+C+E+M+B+E+R   =  -5+9+5+9-2-10+9-3   = 12 

 
 
 

The above is one of six possible assignments all using the integers from –10 to +10. If 
this seems surprising, note that the same trick can be worked for the seven days of the 
week using the integers from –7 to +7 in no less than 664 different ways! One example is 
seen here: 
 

-7 –6 –5 –4 –3 –2 –1  0  1  2  3  4  5  6  7 
 S  R  O  E  M  U  N  F  I  D  Y  H  T  A  W 

 
S+U+N+D+A+Y       = -7-2-1+2+6+3       =  1 
M+O+N+D+A+Y       = -3-5-1+2+6+3       =  2 
T+U+E+S+D+A+Y     =  5-2-4-7+2+6+3     =  3 
W+E+D+N+E+S+D+A+Y =  7-4+2-1-4-7+2+6+3 =  4 
T+H+U+R+S+D+A+Y   =  5+4-2-6-7+2+6+3   =  5 
F+R+I+D+A+Y       =  0-6+1+2+6+3       =  6 
S+A+T+U+R+D+A+Y   = -7+6+5-2-6+2+6+3   =  7 

 
 
 
Alternatively, astrology identifies each month with a sign of the Zodiac: January-
Aquarius, February-Pisces, March-Aries, April-Taurus, May-Gemini, June-Cancer, July-
Leo, August-Virgo, September-Libra, October-Scorpio, November-Sagittarius and 
December-Capricorn. Distinct integers can be assigned to the 17 letters of the Zodiac as 
follows: 
 

 A  B  C  E  G  I  L  M  N  O  P  Q  R  S  T  U  V 
-3 –8  7 –4  9  4 11 –2 –6  0 –7 –9  5  1 –5  3-10 

 
to yield: 
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A+Q+U+A+R+I+U+S        =       -3-9+3-3+5+4+3+1    =  1 
P+I+S+C+E+S            =           -7+4+1+7-4+1    =  2 
A+R+I+E+S              =             -3+5+4-4+1    =  3 
T+A+U+R+U+S     =           -5-3+3+5+3+1    =  4 
G+E+M+I+N+I     =            9-4-2+4-6+4    =  5 
C+A+N+C+E+R            =            7-3-6+7-4+5    =  6 
L+E+O                  =                 11-4+0    =  7 
V+I+R+G+O              =            -10+4+5+9+0    =  8 
L+I+B+R+A              =             11+4-8+5-3    =  9 
S+C+O+R+P+I+O          =          1+7+0+5-7+4+0    = 10 
S+A+G+I+T+T+A+R+I+U+S  =  1-3+9+4-5+5-3+5+4+3+1    = 11 
C+A+P+R+I+C+O+R+N      =      7-3-7+5+4+7+0+5-6    = 12  

 
 
 
The above assignments are the smallest set of integers to produce a solution. One using 
consecutive integers is impossible. On the other hand, astrology also associates the signs 
of the Zodiac with heavenly bodies: sun, moon or planet in each case. However, nine 
planets plus one sun and and one moon do not make twelve, so that a simple one on one 
relation cannot obtain. An alternative is to take the nine planets in order of their distance 
from the sun, a mapping that can be achieved with consecutive values: 
 

-8 –7 –6 –5 –4 –3 –2 –1  0  1  2  3  4  5  6  7  8 
 J  H  M  L  C  N  V  T  U  R  I  S  E  Y  A  P  O 

 
 
 

S+U+N         =          3+0-3 = 0 
M+E+R+C+U+R+Y = -6+4+1-4+0+1+5 = 1 
V+E+N+U+S     =     -2+4-3+0+3 = 2 
E+A+R+T+H     =      4+6+1-1-7 = 3 
M+A+R+S       =       -6+6+1+3 = 4 
J+U+P+I+T+E+R = -8+0+7+2-1+4+1 = 5 
S+A+T+U+R+N   =    3+6-1+0+1-3 = 6 
U+R+A+N+U+S   =    0+1+6-3+0+3 = 7 
N+E+P+T+U+N+E = -3+4+7-1+0-3+4 = 8 
P+L+U+T+O     =      7-5+0-1+8 = 9 

 
 
 
 
Chromatic Codes 
 
 
Turning to a quite different area, the International Color Code is much used in the 
electronics industry for indicating component values, the ohmic value of resistors 
especially. The code assigns colors in spectral order to the ten decimal digits, 0-9, as 
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follows: BLACK = 0, BROWN = 1, RED = 2, ORANGE = 3, YELLOW = 4, GREEN = 
5, BLUE = 6, VIOLET = 7, GRAY = 8, WHITE = 9. Component values are represented 
by strings of colored dots or stripes which are then read from left to right, starting with 
the stripe printed nearest to one end of the component. Is it possible to map integers onto 
the 18 letters in the color words to produce self-descriptive codes? It is. Moreover, it can 
even be achieved using those self-same single decimal digits. The first assignment below 
is American usage (GRAY), and the second, British (GREY): 
 
 

-9 –8 –7 –6 –5 –4 –3 –2 –1  1  2  3  4  5  6  7  8  9 
 O  Y  C  D  H  B  N  K  E  G  T  V  U  I  A  L  W  R 
 C  T  D  G  N  L  O  H  U  K  R  W  B  Y  V  E  A  I 

 
 
to produce: 
 
 

B+L+A+C+K   =  -4+7+6-7-2   = 0 
B+R+O+W+N   =  -4+9-9+8-3   = 1 
R+E+D       =   9-1-6       = 2 
O+R+A+N+G+E =  -9+9+6-3+1-1 = 3 
Y+E+L+L+O+W =  -8-1+7+7-9+8 = 4 
G+R+E+E+N   =   1+9-1-1-3   = 5 
B+L+U+E     =  -4+7+4-1     = 6 
V+I+O+L+E+T =   3+5-9+7-1+2 = 7 
G+R+A+Y     =   1+9+6-8     = 8 
W+H+I+T+E   =   8-5+5+2-1   = 9 

 
 
Another way to present this is to prepare a strip as shown below, using felt pens to write 
the three symbols of each column in the appropriate color. Get someone to choose a color 
on the strip. The name of the color can now be spelt out letter by letter, while the 
associated digits, positive when above, negative when below, are totalled. Their sum is of 
course that number printed in the color first selected. 
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Note that no letter is assigned to zero here. Alternative mappings using –8, -7,..0,1,…9 or 
–9, -8,…,0,1,…8 can be found to produce American or British versions in both cases. 
Going one step further, since negative values cannot be represented in the International 
Color Code, I speculated whether an extra color could be brought in to use as a minus 
sign, Suppose pink in first position is to indicate that the value it precedes is negative. 
Thus pink multiplies by –1. Bringing in the new letter P and assigning all ten digits as 
follows: 
 

-9 –8 –7 –6 –5 –4 –3 –2 –1  0  1  2  3  4  5  6  7  8  9 
 P  O  K  C  W  V  E  G  U  D  B  Y  A  H  R  T  I  N  L 
 T  K  N  U  D  W  L  G  V  R  A  C  Y  O  P  H  E  B  I 

 
yields the same sums as above, together with P+I+N+K = -1, as required. Surprisingly the 
same trick can be worked using silver (and adding S) or magenta (and adding M) instead. 
Below, the first pair of codes employ SILVER, and the second pair, MAGENTA: 
 

-9 –8 –7 –6 –5 –4 –3 –2 –1  0  1  2  3  4  5  6  7  8  9 
 N  W  V  D  A  U  C  I  S  K  L  E  Y  G  O  R  B  T  H 
 I  C  N  U  D  W  L  G  V  R  A  K  Y  O  S  H  E  B  T 
 T  C  K  O  U  M  D  G  W  N  Y  E  R  L  B  A  V  H  I 
 W  G  D  C  U  T  V  K  N  L  O  A  M  R  E  B  Y  I  H 

  
 
 
A Sematric Variant 
 
One further map deserves a place in this collection. As detailed in [4], in sematria 
numbers are represented in a positional notation that uses letters as digits. The base used 
is 27, with A = 1, B = 2, etc, and an extra sign standing for 0, e.g. the undescore “_”. 
Every letter string then corresponds to a unique integer. Thus ABC = A×272 + B×271 + 
C×270 = 1×729 + 2×27 + 3 = 786. Word-integers are called wints. This system can be 
exploited to produce perfect numbers of a quite novel kind. A clear distinction between 
lower case variables and upper case digits is then essential. For example, let: 
 
 
    e =  7052     =  IRE          r =  10779793 =  TGRBP 
    f = -78366425 = -ELLKNE       s = -68017387 = -DSZQHM 
    g =  2555594  =  DUVPQ        t =  5684     =  GTE 
    h =  1        =  A            u =  67714013 =  DSKFDK 
    i =  271396   =  MUGS         v =  7331     =  JAN 
    n =  2029     =  BUD          x =  67760109 =  DSMOJR 
    o =  2237     =  CAW          z = -10273178 =  SHYDB 
 
 
 
then: 
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               z+e+r+o     = 515904   = ZERO 
               o+n+e       = 11318    = ONE 
               t+w+o       = 15216    = TWO 
               t+h+r+e+e   = 10799546 = THREE 
               f+o+u+r     = 129618   = FOUR 
               f+i+v+e     = 125258   = FIVE 
               s+i+x       = 14118    = SIX 
               s+e+v+e+n   = 10211981 = SEVEN 
               e+i+g+h+t   = 2839691  = EIGHT 
               n+i+n+e     = 14729    = NINE 
               t+e+n       = 14729    = TEN 
               e+l+e+v+e+n = 78236429 = ELEVEN 
 
 
The sum of the letter values in the words zero, one, two, .. is now the same as those 
numbers represented by the letter strings zero, one, two,.. when interpreted in sematric 
notation. Note that a few of the integers mapped onto e,f,.. are themselves wints. Could 
the same result be achieved using wints only? The above is the best solution known. 
Going beyond consecutive series, what letter values will maximize the cardinals 
produced? That ELEVEN marks the limit here can be proved as follows. From the 
anagram twelve + one : eleven + two, we see that t+w+e+l+v+e = e+l+e+v+e+n + t+w+o 
– (o+n+e). But although 12 = 11 + 2 –1, TWELVE ≠ (ELEVEN + TWO – ONE)  
because 78236429 + 15216 - 11318 = 78240327 = ELF_NX ≠ TWELVE = 299309045. 
 
A mathematical proof that relies on an anagram? Now these are deep waters, Jeeves! 
 
[1] L. Sallows, The New Merology, Word Ways, Feb. 1990, pp 12-19 
[2] L. Gordon and A.R. Eckler, Answering the Sallows Challenge, Word Ways, May  
     1990, pp 93-5 
[3] L. Sallows, Spanagrams, Word Ways, Feb. 1992, pp 59-60 
[4] L. Sallows, Base 27: The Key To A New Gematria, Word Ways, May 1993, pp 67-77 
 
 
 
Postscript  [added  August 2016] 
 
 
Franz Kaslatter of Innsbruck has written to me to point out that my German map on page 
13 is flawed.  In German, 16 is SECHZEHN not “SECHSZEHN”. As he says, since 
SECHS = 6 and ZEHN = 10, if  SECHZEHN = 16 then S must equal zero. Similarly, 
since SIEBEN = 7 and SIEBZEHN = 17 we know E+N = 0, which with EINS = 1 means 
that I = 1. The lowest-values solution (now reaching only 39 rather than 49) I then find is 
as follows: 
 
A  B  C  D  E  F  G  H  I  L  N  O  R  S  T  U  V  W  Z 

 -14 –1  9 -9  7 –2 26–10  1  6 –7 14  4  0 23 16 -8–26 20 
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The resulting list of perfect German number names is as shown: 
 
 

E+I+N+S     =    7+1-7+0    = 1  S+E+C+H+Z+E+H+N = 0+7+9-10+[10] = 16 
Z+W+E+I     =   20-26+7+1   = 2  S+I+E+B+Z+E+H+N = 0+1+7-1+[10]  = 17 
D+R+E+I     =   -9+4+7+1    = 3  A+C+H+T+Z+E+H+N  = [8] + [10]   = 18 
V+I+E+R     =   -8+1+7+4    = 4  N+E+U+N+Z+E+H+N  = [9] + [10]   = 19 
F+U+N+F     =   -2+16-7-2   = 5  Z+W+A+N+Z+I+G                   = 20 
S+E+C+H+S   =    0+7+9-10+0 = 6  E+I+N+U+N+D+Z+W+A+N+Z+I+G       = 21 
S+I+E+B+E+N =   0+1+7-1+7-7 = 7          .                                        
A+C+H+T     =   -14+9-10+23 = 8          .                                         
N+E+U+N     = -7+7+16-7     = 9          . 
Z+E+H+N     = 20+7-10-7    = 10  N+E+U+N+U+N+D+Z+W+A+N+Z+I+G     = 29 
E+L+F       = 7+6-2        = 11  D+R+E+I+S+S+I+G = [3]+0+0+1+26  = 30 
Z+W+O+L+F   = 20-26+14+6-2 = 12  E+I+N+U+N+D+D+R+E+I+S+S+I+G     = 31                  
D+R+E+I+Z+E+H+N = [3]+[10] = 13          .                                      
V+I+E+R+Z+E+H+N = [4]+[10] = 14          .  
F+U+N+F+Z+E+H+N = [5]+[10] = 15  N+E+U+N+U+N+D+D+R+E+I+S+S+I+G   = 39 
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The Ontological Problem 
 
 
Paying a recent call on my old friend Professor Einschwein, Transylvania’s former 
leading logologist, I discovered him busy in his laboratory. “How’s tricks, Professor?” I 
asked, noting as I did that he was using a Bunsen burner to melt chocolate letters into a 
glass flask that was perched on one side of a chemical balance. The opposing balance pan 
supported a similar flask containing what on closer inspection looked suspiciously like 
alphabet soup. Einschwein is eccentric of course, but an ackowledged genius in his 
subject. His projected opus, Principia Logologia promises to be a landmark in the field. 
 
“Oh, nothing special,” he murmured, gazing fondly at a gently disssolving Z held in his 
forceps. “It’s just another little experiment connected with the alphabet problem. I don’t 
suppose it will yield much of interest.” 
“The alphabet problem?” I said, looking around me at the clutter of Einschwein’s 
workspace and noting a curious diagram on a nearby piece of paper. “Hey, what is this 
peculiar pattern of marks here?” 
“They are only the serifs of Nottingham,” he replied. 
“The sherrif of Nottingham? What on earth do you mean?” 
“Not sherrif, serifs,” he said, “they are the serifs of the word ‘NOTTINGHAM’, but 
minus the letters themselves.” I looked carefully at the pattern and saw he was right: there 
were the four serifs of the leading N, a space for the O, two similar triangular groups 
corresponding to two capital T’s, and so on. I could hardly believe my eyes. 
“But of what conceivable interest are the serifs of the word Nottingham?” I exclaimed. 
“Mmmn…?” he responded, his attention still absorbed in the melting Z. “Well, I suppose 
it is a bit abstruse now that you mention it. I’m afraid it would take while to explain in 
detail, but it’s all part and parcel of my work on the problem.” 
“On the alphabet problem, you mean?” 
“Naturally.” 
“What problem do you mean? Is there a problem with the alphabet?” 
He glanced at me over his pince-nez. “But of course,” he said, “the ontological problem. 
What else?” 
“The ontological problem? How it first emerged, its history?” 
“No, no, that aietiology, theory of causes. I’m talking about the being or essence of the 
thing, its metaphysical quiddity, abstract substance, intrinsic nature, fundamental reality, 
what the entity really is.” 
“What the alphabet is?” I laughed. “Oh, come on Professor, you’ve got to be kidding!” 
He looked at me with curiosity. “You surprise me,” he said, “I’d always assumed the 
problem was widely recognized.” 
“Wait a moment,” I said, “maybe I misunderstood. For a minute you seemed to imply 
that you couldn’t describe the alphabet —that you couldn’t even explain what the thing 
actualy comprises.” 
“You have it perfectly.” 
“You’re trying to tell me that you don’t know what the alphabet is—that you cannot give 
a definition of the word alphabet?” 
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“Not any more than you can.” 
“Not any more than I can? You don’t seriously believe that I can’t explain what I mean 
by the word ‘alphabet’, do you?” 
“But that is exactly what I mean!” he replied, laying down his forceps and smiling. 
“Let’s get this right,” I said, “you mean the ordinary, everyday alphabet that we learned 
at school—the Roman alphabet.” 
“The Roman alphabet.” 
“But for Heaven’s sake Professor,” I said, “the alphabet is only a bunch of letters!” 
“Now you’re being flippant.” he said, “Pray be precise.” 
“Very well, I will. The Roman alphabet is a set of conventional typographical signs 
called letters. There are twenty-six letters in all and they occur in the alphabet arranged in 
a certain pre-defined order. How’s that?” 
“Better,” said Einschwein. “So, the alphabet is an ordered set of twenty-six signs called 
letters?” 
“It is.” 
“You are sure there are twenty-six?” 
“Exactly and precisely twenty-six.” 
“And what are these twenty-six signs?” he asked. 
“The twenty-six signs, my friend,” I said, trying hard to keep an edge of sarcasm out of 
my voice, “are the typographical entities known to us as A, B, C, and so on.” 
“I’m not sure I know what you mean,” he said, pushing a pencil and notebook over the 
table. “Show me.” 
Taking up Einschwein’s pencil, I dutifully wrote out ‘A’, ‘B’, ‘C’ etc up to and including 
‘Z’. Having done so I slid the notebook back to him. 
“I see,” he said, “so the twenty-six typographical symbols here are the things you call 
letters, and the complete set, arranged in this order, is what you call the Roman alphabet. 
Have I got that quite right?” 
“You have grasped it to perfection, Prof.” 
“Then tell me,” he said,  “what exactly would this be?” He drew something on the page 
and handed it back. I looked at the sheet and saw he had drawn an ‘a’. 
“It’s a lower-case A,” I replied. 
“I beg your pardon?” 
“A lower-case form of the letter A” I repeated. 
“Are you implying this sign is a letter?” 
“Of course it is.” 
“But it is not one of the twenty-six you showed me.” 
“No,” I said, “I just told you, this is a lower-case letter.The ones I wrote out are upper-
case.” 
“So the sign I have just drawn is a letter but it is not one that is in the alphabet?” 
“Not at all. The letters of the alphabet come in two different forms, upper-case and lower-
case. I just happened to write out the upper case forms.” 
“So you mean there are really fifty-two letters in the alphabet?” 
“No! Hey, you are deliberatly confusing the issue.” 
“On the contrary,” responded Einschwein, “it is you who confuses things. First you tell 
me that the alphabet comprises ‘exactly and precisely’ this set of twenty-six signs and no 
others. Next you imply that although quite distinct from any of your signs, the symbol I 
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have drawn is nevertheless a member of the alphabet. What are you trying to tell me, that 
there are really two alphabets, one upper-case, the other lower-case?” 
“Of course not. Look, be reasonable. Everyone knows that the alphabet is comprised of 
twenty-six letters.” 
“Once upon a time everyone knew the earth was flat. Did that prove that it was?” 
“Now wait a minute, that is an empirical question. Here we are talking about a definition. 
The alphabet is made up of twenty-six letters, each of which can appear in one of two 
forms: upper-case or lower-case. The form may vary but the letter remains the same.” 
“The form may vary but the letter remains the same? I thought you said that a letter was a 
typographical sign, which is to say a written symbol having a definite shape?” 
“So it is.” 
“Well, I can see that small variations in form could be overlooked provided the intended 
shape remains recognizable. But how can you argue that upper-case ‘A’ and lower-case 
‘a’ are really the same letter, which according to you means the same symbol, when their 
two shapes are entirely distinct? How can the first symbol in the alphabet be both this 
symbol here and that different symbol there?” 
“Well, I grant you seem to have a point.” I replied weakly, ‘but until now I guess 
everybody has always just kind of …” 
“Forget everybody. Use your reason. Two distinct typographical signs cannot be one 
particular typographical sign. So if two distinct typographical signs are identified with a 
particular thing called a letter, then obviously the letter itself must be an entity that is 
something other than either of these two typographical signs.” 
“Well, all right, it may be that they cannot both be the same typographical sign yet 
nevertheless they are both called the same letter, they both have the same name,” I said, 
“and they both stand for, symbolize, the same thing.” 
“And what thing is that?” 
I hesitated. Einschwein had inveigled me onto unfamiliar ground. “Well, they both 
represent the same sound, I guess. The sound ay. And the sound ay is also their name.” 
“You mean that the two signs are alternative symbols for the sound ay?” 
“Yes.” 
“But not symbols for the sound ah?” 
“Okay, ah also. Look, I am not a phonologist. The two letters are alternative symbols for 
a whole family of different sounds: the ay in ‘bay’, the ah in ‘bath’, the a in ‘cat’… it all 
depends on context.” 
“So these two letters—you admit the plurality—which are both sounds called ay, are 
interchangable symbols for a family of possible sounds, among them the sound ay itself?” 
“You’ve got it.” 
“Do you now mean to tell me that the alphabet is really a set of twenty-six families of 
sounds?” 
“No, the alphabet is a set of twenty-six letters. What those letters themselves stand for is 
strictly irrelevant to the problem of what the alphabet really is.” 
“Very well. I’ll accept that. But at least you now seem to see that there is a problem to be 
faced here. However, you still overlook something.” 
“And that is?” 
“You began by insisting that a letter was a typographical sign.” 
“It was youthful ignorance.” 
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“Whereas a moment ago you said that although upper-case ‘A’ and lower-case ‘a’ may 
not be the same typographical sign, they are nevertheless called the same letter and they 
both symbolize the same thing.” 
“I did.” 
“But you now accept that whatever the entity known as ‘letter ay’ may be, it must be 
something that is distinct from either of the typographical signs ‘A’ and ‘a’?” 
“So it would seem I am reluctantly compelled to acknowledge.” 
“Now, assuming you were correct in the first place, doesn’t that tell you something?” 
“How do you mean, ‘correct in the first place’?” 
“Well, consider. If letter ay is a typographical sign, but it is not the typographical sign 
‘A’ and it is not the typographical sign ‘a’, then …?” 
“It must be some other typographical sign?” 
“Is there any logical alternative?” 
“You mean that letter ay might really be … the ampersand, for instance?” 
“Now you are being inconsistent.” 
“Inconsistent?” 
“Well, did you or didn’t you insist that letters were members of the alphabet?” 
“Of course I did, but I thought you had just overturned that idea!” 
“Not at all. All I have done is to refute the notion that letter ay is the sign ‘A’ or the sign 
‘a’. But does that prevent it from being some other typographical sign in the alphabet?” 
“So letter ay might not be the ampersand but it could be … Q, for instance?” 
“Q would certainly fit the bill—provided we could establish that Q was in the alphabet, 
of course. At least, if letter ay were Q, and Q could be shown to be a member of the 
alphabet, then it would clear up our immediate problem.” 
“Our immediate ontological problem?” 
“Exactly. Which is only a part—a one twenty-sixth part, you might say—of our general 
ontological problem.” 
“But then we would come to the problem of letter kew?” 
“There’s that, of course, but first, what of the validity of your primary assertion?” 
“My primary assertion?” 
“That letters are members of the alphabet.” 
“You mean they may not be?” 
“Well, do you have any firm evidence to offer in support?” 
I gripped the table and gazed wildly about me. “Look here Professor, do you mind if I ask 
you a question?” 
“By all means.” 
“Then may I enquire why you are weighing melted chocolate letters against alphabet 
soup on that balance there?” 
“With pleasure,” he said, “but it’s an experiment with a complicated background. How 
versed are you on the theory of letters?” 
“The theory of letters?—I’ve heard of the theory of numbers.” 
“Oh dear,” he said, “I’m afraid this is going to mean a descent to fundamentals.” 
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